INTERNATIONAL OLIVE OIL COUNCIL

JAIME LILLO, DEPUTY EXECUTIVE DIRECTOR INTERNATIONAL OLIVE OIL COUNCIL

- 1. Introduction: global trends
- 2. The IOC Campaign to raise awareness of the positive impact of olive growing
- 3. World evaluation of the carbon balance of olive oil
- 4. Conclusions

Source. Generating organic growth: Workshop "Medium-term outlook for the EU agricultural commodity markets", Cargill (2019)

A MAJORITY OF EUROPEANS THINK THAT PROTECTING THE ENVIRONMENT IS IMPORTANT TO THEM PERSONALLY (94%)

Source. Flash Eurobarometer 468 (2017), Attitudes of European citizens towards the environment

AND CLIMATE CHANGE (51%) AND AIR POLLUTION (46%) ARE CONSIDERED THE MOST IMPORTANT ENVIRONMENTAL ISSUES

Source. Flash Eurobarometer 468 (2017), Attitudes of European citizens towards the environment

PEOPLE WORLDWIDE ARE CLAMING FOR A SOLUTION, ESPECIALLY YOUNGER GENERATIONS...

WHAT ARE THE INITIATIVES THE IOC HAS LAUNCHED IN ORDER TO ADDRESS THE PROBLEM OF CLIMATE CHANGE?

Although agriculture and livestock are thought to be responsible for 14% of green house gas emissions; several studies show that the olive tree is capable of fixing CO2 in the soil in a stable way.

IOC STEPS TO BRING AWARENESS OF CLIMATE CHANGE AND OLIVE GROWING

STRATEGY

HIGHLIGHT THE POSITIVE EFFECTS OF OLIVE GROWING IN THE ENVIRONMENT

APPROACH

DEVELOP A TOOL IN ORDER TO ESTABLISH THE CRITERIA FOR DETERMINING THE BALANCE SHEET CO2 OF OLIVE OIL

ACTION

PROVIDE OLIVE OIL WITH A POSITIVE DIFFERENTIATION RECOGNIZED IN SEVERAL NATIONAL MARKETS

A COMMITMENT OF THE IOC: BACKGROUND OF THE CARBON BALANCE OF THE OLIVE TREE AROUND THE WORLD

17 SUSTAINABLE MANAGEMENT STRATEGY MARRAKECH 2016

THE IOC PRESENTS A STRATEGY ON SUSTAINABLE MANAGEMENT OF OLIVE OIL PRODUCTION on the occasion of COP22

PROGRAMME

9:00

ARRIVAL OF PARTICIPANTS

0.1	15	OPENII
9 .	IJ	Olivo are

OPENING Olive growing & climate change mitigation

9:30 THE IOC GLOBAL CO2 BALANCE OF OLIVE GROWING

Abdelkrim Adi IOC Head of the olive growing, olive oil technology and environment unit

9:45 CARBON BALANCE IN THE OLIVE GROWING, AGRONOMIC VARIABLES AND SCENARIOS

Juan Francisco Hermoso León Technology transfer and services to olive growing and nuts. IRTA Mas de Bover

10:20

THE SOFWARE TOOL, COMMUNICATION PLAN AND DISSEMINATION OF INFORMATION Juan Antonio Polo Palomino CO2 Consulting

10:40

RECOMMENDATIONS FOR IMPROVING THE CARBON BALANCE Cristos Xiloyannis Università degli Studi della Basilicata | UniBas

11:15 COFFEE BREAK

PROGRAMME

11:45

ROUND TABLE: OLIVE GROWING & CLIMATE CHANGE ADAPTATION

Abichou Mounir Institut de l'olivier de Zarzis Tunisia

Ricardo Fernández-Escobar

University of Cordoba Department of Agronomy, ETSIAM Cordoba-Spain

Zohar Kerem

Institute of Biochemistry, Food Science and Nutrition HUJI Israel

ROUND TABLE: OLIVE GROWING & CLIMATE CHANGE COMMUNICATION

Teresa Perez Olive oil environmental footprint Inter-professional Spanish Olive Oil Association

Annunziato Scaramozzino

Project: Olive4Climate-Life UNAPROL Italia

13:45

13:00

CLOSING

14:00 LUNCH

2 R 4 1 66 Z 4 0 \mathbf{m} H R 2

WORLD EVALUATION OF THE CARBON BALANCE OF OLIVE OIL

- IDENTIFY THE MAIN PRODUCER COUNTRIES (12)
- DESIGN SCENARIOS BASED ON CROP VARIABLES (144)
- DEFINE POTENCIAL SCENARIOS
- INFROMATION REGARDING THE OLIVE OIL PRODUCTION CYCLE
- DETERMINE THE BALANCE OF CARBON THROUGH THE IOC WEB TOOL

ANALYSIS PLANTATION MODELS

Operating model	Traditional dry	Traditional irrigation	Intensive	High density	Superintensive	
Framework	10-12 x 10 m	10 x 10 m	6-7 x 5-6 m	5-7 x 2-4 m	4 x 1,5m	
Formation	2-3 branches/tree	1-2 branches/tree	High trunk	Trunk 2 branches/cent ral axis	Central axis/ smartree	
Harvest system	Vibrator/manual	Vibrator trunk	Vibrator with umbrella	Colossus/later al	Combine harvester	
Irrigation resources	-	1500m3/ha	2000 m3/ha	2500 m3/ha	3500m3/ha	
Average production	2000kg/ha	4000kg/ha	6500 kg/ha	8000 kg/ha	9500 kg/ha	SOURCE Hermoso et al. (2014)

	Traditional machinisable (dry/irrigation)	Intensive (irrigation)	High density (irrigation)	Superintensive (irrigation)
Fertilisastion	Foliage Soil/fertirrig	Foliage Soil/fertirrig	Foliage Fertirrigation	Foliage Fertirrigation
Pests and diseases	2/3 treatments (1 it + $\frac{1}{2}$ prim)	4 treatments (2 ot + 2 prim)	4-5 treatments (1 inv+2 pri+2ot)	5 treatments (1 inv+2 pri+2 ot)
Phytos and foliage application	Spray	Spray	Spray	Spray
Soil Maintenance	Tilling Coverage espont.	Minimum tillage coverage streets	Vegetal coverage pruning residue	Vegetal coverage pruning residue
Pruning y desvareto	Renovation > 30 years	Formation 6 years Produc. <30 years	Formation 5 years Produc. < 20 years	Formation 4 years Produc. < 15 years
Removal of pruning residues	Manual	Manual and grinding	Grinding	Grinding

CULTIVATING THE CROPS

SOURCE

Aproximación a los costes de cultivo del olivo. AEMO (2010)

MILL DIMENSIONS

Duration: 50 days	AOVES Traditional-Tra	6 from the plan aditional irrigati	tation on-intensive	High intensitive		
Daily intake	2000 kg	6000kg	13000kg	24000 kg	38000 kg	
Mill capacity	10 t	20 t	30 t	60 t	75 t	
Installed capacity	10 Kw/10 KwT	20 Kw/35 KwT	40 Kw/ 35 KwT	40 Kw/125 KwT	100 Kw/150 KwT	
Hours day/crop year	5/35	10/128	14/208	13/171	16/203	SOURCE
Investment	100.000€	150.000€	225.000€	350.000€	500.000€	Hermoso et al. (2014)

G	Variable/ eographic region	Country	Production (1000t)	Global Production (%)	By Region (%)
V1,1	West Mediterranean	V 1,1,1 Spain	1.240,04	43,08%	
		V 1,1,2 Italy	415,77	14,44%	
		V 1,1,3 Greece	287,21	9,98%	
		V 1,1,4 Tunisia	177,43	6,16%	81,93%
		V 1,1,5 Morocco	117,86	4,09%	
		V 1,1,6 Portugal	66,69	2,32%	
		V 1,1,7 Argelia	53,43	1,86%	
V1,2	East Mediterranean	V 1,2,1 Syria	159,71	5,55%	
		V 1,2,2 Turkey	159,71	5,55%	11,82%
		V 1,2,3 Jordan	20,79	0,84%	
V1,3	South America	V 1,3,1	24 14	0,84%	0,84%
		Argentina	24,14		
V1,4	North America	V 1,4,1 USA	5,00	0,17%	0,17%
Total (V1,1+V1,2+V1,3+V1,4)			2.727,79	94,76%	94,76%
Global total			2.878,71		

BALANCE OF CO2 OLIVE CULTIVATION

MAIN PRODUCER COUNTRIES

BALANCE OF CO2 OF OLIVE CULTIVATION - LIFE CYCLE -

R LLI Z > $\boldsymbol{\cup}$

CONCLUSIONS

"An olive tree footprint stores the annual carbon footprint of a person"

"The world production of olive oil absorbs the emissions of 16,000 people"

"The world olive stores an amount of CO2 equivalent to that originated by 7,000,000 inhabitants"

"The olive grove is a sustainable strategy against climate change"

THANK YOU FOR YOUR ATTENTION

JAIME LILLO INTERNATIONAL OLIVE COUNCIL

EMAIL ADDRESS

j.lillo@internationaloliveoil.org